Comprehensive guide to all available AI APIs including Kimi K2 Ministry of Experts, Google Gemini, Anthropic Claude, OpenAI GPT, Together AI, and Hugging Face. Learn model selection strategies and A/B testing techniques.
RealAroha provides access to 30+ AI models across 6 major providers. Smart model selection can reduce costs by 60-90% while maintaining or improving quality. This guide covers text generation, vision, voice, and specialized models.
$0.15-0.60/1M tokens, 100-500ms
$3-5/1M tokens, 1-2s
$15-30/1M tokens, 2-5s
Instead of one large model, K2 uses a coordinated system of specialized expert models. A router analyzes your task and delegates to the most appropriate expert(s), combining outputs for superior results.
Multi-expert system
Multimodal, ultra-fast
Deep reasoning, long documents
Use Gemini for:
Best balance of intelligence & speed
Fastest Claude, best value
Most capable, for expert tasks
Use Claude for:
Multimodal flagship
Fast, cost-effective, intelligent
Extended reasoning for complex problems
Use GPT for:
Meta's best open model, ultra-fast
Alibaba's multilingual powerhouse
Open reasoning model rivaling o1
Use Together AI for:
Hugging Face provides access to the world's largest AI model hub. Use it for specialized models not available elsewhere: code models, embedding models, image generation, audio transcription, and domain-specific fine-tunes.
CodeLlama, StarCoder, WizardCoder
sentence-transformers, E5, BGE
Stable Diffusion XL, SDXL Turbo
Whisper, SpeechT5, Bark
// lib/ai/ab-testing.ts
import { generateText } from 'ai'
interface ABTestConfig {
models: {
variant: 'A' | 'B' | 'C'
modelId: string
trafficPercentage: number
}[]
metrics: {
trackQuality: boolean
trackLatency: boolean
trackCost: boolean
}
}
const abConfig: ABTestConfig = {
models: [
{ variant: 'A', modelId: 'gpt-4o-mini', trafficPercentage: 50 }, // Control
{ variant: 'B', modelId: 'claude-3-haiku', trafficPercentage: 25 }, // Test 1
{ variant: 'C', modelId: 'together/llama-3.3-70b', trafficPercentage: 25 } // Test 2
],
metrics: {
trackQuality: true,
trackLatency: true,
trackCost: true
}
}
export async function generateWithABTest(
prompt: string,
userId: string,
taskType: string
) {
// 1. Select model variant based on traffic split
const variant = selectVariant(abConfig.models, userId)
const startTime = Date.now()
// 2. Generate with selected model
const { text } = await generateText({
model: variant.modelId,
prompt: prompt,
})
const latency = Date.now() - startTime
// 3. Track metrics
await trackABTestMetrics({
userId,
taskType,
variant: variant.variant,
modelId: variant.modelId,
latency,
cost: calculateCost(variant.modelId, prompt.length, text.length),
timestamp: new Date()
})
return { text, variant: variant.variant }
}
function selectVariant(models: any[], userId: string) {
// Consistent hashing: same user always gets same variant
const hash = hashString(userId)
const percentage = hash % 100
let cumulative = 0
for (const model of models) {
cumulative += model.trafficPercentage
if (percentage < cumulative) {
return model
}
}
return models[0] // Fallback
}
// Quality evaluation
export async function evaluateResponse(
response: string,
expectedCriteria: string[]
) {
// Use a judge model (e.g., GPT-4o) to evaluate quality
const { text } = await generateText({
model: 'gpt-4o',
prompt: `Evaluate this AI response on these criteria: ${expectedCriteria.join(', ')}.
Response: ${response}
Rate each criterion 1-10 and provide overall score.`
})
return parseEvaluationScore(text)
}
// Example: Comparing models for customer support
async function testCustomerSupportModels() {
const testCases = [
"How do I reset my password?",
"What's your refund policy?",
"I'm having trouble with checkout"
]
const models = ['gpt-4o-mini', 'claude-3-haiku', 'together/llama-3.3-70b']
for (const testCase of testCases) {
console.log(`Testing: ${testCase}`)
for (const model of models) {
const start = Date.now()
const { text } = await generateText({ model, prompt: testCase })
const latency = Date.now() - start
const quality = await evaluateResponse(text, [
'Accuracy',
'Helpfulness',
'Tone',
'Conciseness'
])
console.log(` ${model}: ${quality}/10 quality, ${latency}ms, $${calculateCost(model, testCase, text)}`)
}
}
}Pro Tips for A/B Testing:
| Use Case | Recommended Model | Alternative | Budget Option |
|---|---|---|---|
| Customer support chat | GPT-4o Mini | Claude Haiku | Llama 3.3 70B |
| Long-form content | Claude 3.5 Sonnet | GPT-4o | Kimi K2 |
| Code generation | GPT-4o | Claude 3.5 Sonnet | Qwen 2.5 72B |
| Image analysis | Gemini 2.0 Flash | GPT-4o Vision | Claude 3.5 Sonnet |
| Complex reasoning | Kimi K2 | GPT-o1 | DeepSeek R1 |
| Long documents (500K+ tokens) | Gemini 1.5 Pro | Claude 3.5 Sonnet | Kimi K2 |
| Real-time chat (<500ms) | Gemini 2.0 Flash | Llama 3.3 Turbo | GPT-4o Mini |
| Multilingual | Qwen 2.5 72B | Gemini 1.5 Pro | Llama 3.3 70B |